TTL, oder ... ein bisschen elektronische Vorgeschichte
Die Entwicklung der Digitaltechnik hat eine Änderung der Spannungsstandards erzwungen, in denen die neu hergestellten integrierten Schaltungen arbeiten. Das TTL-System war viele Jahre lang ein Standard für fast die gesamte digitale Elektronik - sowohl einfache Logikgatter als auch die damals komplexesten Mikroprozessoren, die unter der Annahme arbeiteten, dass der niedrige Pegel (L) mit Spannungen von 0 V bis 0,4 V signalisiert wurde , und High-Zustand (H) - von 2,7 V bis 5,5 V. Eine signifikante Asymmetrie resultierte direkt aus dem Aufbau der Eingangs- und Ausgangsschaltungen dieser Systeme, basierend auf klassischen Bipolartransistoren (sowie speziellen Multi-Emitter-Transistoren, die, unterschieden sich jedoch in ihren Grundparametern nicht von einzelnen BJT-Strukturen).
Spannungsschwellen und Spannen im TTL-Standard
Es ist erwähnenswert, dass die oben erwähnten logischen Pegel die Ausgangssignale betrafen - die Eingänge könnten in einem größeren Bereich arbeiten, bzw. 0..0,8 V (L) und 2..5 V (H). Die Differenz zwischen den entsprechenden Grenzwerten ist die sog Schaltspielraum - seine relativ große Breite ermöglichte ein zuverlässiges Zusammenwirken eines Ausgangs mit vielen Eingängen, die - unter Aufnahme eines bestimmten Gleichstroms ungleich Null - seine Last verursachten und infolgedessen die tatsächliche Spannung auf einer bestimmten Leitung in Richtung "Mitte" verschoben " der Bandbreite. Für den korrekten Betrieb des gesamten Systems war es erforderlich, dass die Werte auf keiner digitalen Spannungsleitung den Bereich akzeptabler Eingangsspannungen überschreiten sollten. Die tatsächliche Schaltschwelle lag also irgendwo zwischen 0,8V und 2,0V – ihr genauer Wert war von Fall zu Fall unterschiedlich, aber die Toleranz musste von allen als TTL bezeichneten Schaltungen in Kauf genommen werden.
Moderne Maßstäbe
Heute ist es schwierig, einen gemeinsamen Spannungsstandard zu identifizieren. Üblicherweise wird davon ausgegangen, dass die Spanne symmetrisch ist und meistens 30 % der Versorgungsspannung beträgt (sowohl für den Low- als auch für den High-Pegel). Beispielsweise kann ein mit 5 V betriebenes System den Low-Zustand als eine Spannung interpretieren, die 1,5 V nicht überschreitet, und als High-Zustand - von etwa 3,5 bis 5 V. Dies bedeutet, dass der Ausgang eines 3,3-V-Systems die 5-V-Eingänge möglicherweise nicht richtig ansteuern kann. In solchen Fällen wird ein Spannungswandler 5V 3,3V notwendig. Heutzutage sehr häufig verwendete logische Pegelwandler ermöglichen die Auswahl der Richtung des übertragenen Signals, obwohl einige Versionen automatisch "erkennen", welche Seite des Systems der Eingang und welche Seite der Ausgang ist. Eine häufig genutzte Lösung ist ein System aus Low-Power-MOSFETs und mehreren Widerständen, die deren Arbeitspunkt einstellen – diese Konstruktion eignet sich nicht nur in „einfachen“ Situationen (z ), aber auch ... in Systemen, die auf I2C basieren. Das Vorhandensein separater Pull-up-Widerstände auf beiden Seiten des Systems gewährleistet einen störungsfreien Betrieb beider Geräte, die mit unterschiedlichen Spannungen versorgt werden.